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Excess greenhouse gas emissions and the concomitant effect on global warming have become significant en-
vironmental, social and economic threats. In this context, the development of renewable, carbon-neutral and
economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into de-
veloping biodiesel from microalgae. However, there are still a number of technological, market and policy
barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Converse-
ly, there are also a number of business opportunities if the production of such alternative biofuel becomes
part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical
products of high added value are produced, contributing to an overall enhancement of the economic viability
of the whole integrated system. Additionally, dual purpose microalgae–bacteria-based systems for treating
wastewater and production of biofuels and chemical products significantly contribute to a substantial saving
in the overall cost of microalgae biomass production. These types of systems could help to improve the com-
petitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies.
Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to
treating the wastewater itself. This work reviews the most recent and relevant information about these
types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater
with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of
pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is
reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater
streams, and studies related to population dynamics in mixed cultures, are highlighted as very relevant fields
of research. The species selection may depend on various factors, such as the biomass and lipid productivity
of each strain, the characteristics of the wastewater, the original habitat of the strain and the climatic condi-
tions in the treatment plant, among others. Some alternative technologies aimed at harvesting biomass at a
low cost, such as cell immobilization, biofilm formation, flocculation and bio-flocculation, are also reviewed.
Finally, a Biorefinery design is presented that integrates the treatment of municipal wastewater with the re-
covery of oleaginous microalgae, together with the use of seawater supplemented with anaerobically
digested piggery waste for cultivating Arthrospira (Spirulina) and producing biogas, biodiesel, hydrogen
and other high added value products. Such strategies offer new opportunities for the cost-effective and com-
petitive production of biofuels along with valuable non-fuel products.

© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The strategy of producing biodiesel from microalgae

The International Panel on Climate Change has concluded that our
planet's sustainability relies heavily on our capacity to generate enough
renewable clean energy to satisfy future generations' demands (IPCC,
2007). Thus, many current sustainability issues, such as greenhouse
gas emissions, climate change, fossil fuel depletion and energy security,
can be mitigated (Subhadra, 2010). However, there are many practical
challenges associated with the large-scale production of renewable en-
ergy. The primary constraint in future energy scenarios is the land and
water resources required to harvest, grow or process the potential feed-
stock (Subhadra, 2011).

Using oleaginousmicroalgae to produce biodiesel has several advan-
tages for producing renewable energy, making it the most promising
biofuel option. Among the most important advantages are: a) oleagi-
nous microalgae have an oil yield much higher than that of oleaginous
plants; b) this biofuel has a small ecologic footprint because it requires
less surface area compared to conventional crops; c) some oleaginous
microalgae can be cultivated in seawater or brackish water (Table 1).
Additionally, the fresh water species can be cultivated in municipal
Table 1
Oil content and lipid productivity of some microalgae species (Loera-Quezada and Olguín,

Species Oil content
(% dry weight)

Parietochloris incisa (f) 60a

Nannochloropsis sp. (m) 60a

Neochloris oleoabundans (f) 56a

Chlorella vulgaris (f) ~42a

Crypthecodinium cohnii (m) 41.14a

Scenedesmus obliquus (f) 43b

Neochloris oleoabundans (f) 38c

Nannochloropsis sp. (m) 28.7c

Chlorella vulgaris (f) 27c

Nannochloropsis oculata (m) 30.7c

Dunaliella (m) 67c

Choricystis minor (f) 21.3c

Chlorella protothecoides (f) 50.3d

Chlorella vulgaris (f) 21d

Scenedesmus rubescens (m) 73e

(f)=freshwater; (m)=marine; N.R.=not reported.
a Cultured under nitrogen starvation.
b Cultured under nitrogen deficiency.
c Cultured with nutrient sufficiency.
d Heterotrophic culture.
e Nutrient starvation.
wastewater, avoiding competition for fresh water that is used to irri-
gate crops; d) microalgae are excellent at capturing CO2, fixing
183 tons per every 100 tons of produced biomass; and e) biodiesel
frommicroalgae is one of the very few biofuels with negative CO2 emis-
sions (−183 kg CO2 MJ−1) (Chisti, 2007, 2008).

Furthermore, there have been substantial efforts worldwide to
produce renewable biofuels, resulting in an overwhelming amount
of information in this field. Some recent reviews have offered an in-
depth discussion of several issues within this topic (A. Singh et al.,
2011; Greenwell et al., 2010; Lee, 2011; Loera-Quezada and Olguín,
2010; Mata et al., 2010; McGinn et al., 2011; Norsker et al., 2011;
Park et al., 2011; Schenk et al., 2008; Singh and Olsen, 2011; Wijffels
et al., 2010) and are therefore outside the scope of this review.

In addition to the interest expressed by academic and government
entities in renewable energy technologies, private entities have also
been created to explore these alternative strategies (Christenson and
Sims, 2011). However, significant obstacles (Lam and Lee, 2012;
Singh and Gu, 2010; Tredici, 2010) still need to be overcome before
microalgae–based biofuel production becomes cost-effective and can
impact the world's supply of transport fuel. Several recommenda-
tions have been made recently to overcome the economic constraints
of microalgae production on a large scale. Among the most relevant
2010).

Lipid productivity
(mg L−1 d−1)

Reference

N.R. Solovchenko et al. (2008)
204 Rodolfi et al. (2009)
13.22 Gouveia et al. (2009)
12.77 Widjaja et al. (2009)
82 Mendoza et al. (2008)
N.R. Mandal and Mallick (2009)
133 Li et al. (2008)
90 Gouveia and Oliveira (2009)
127.2 Francisco et al. (2010)
151 Chiu et al. (2009)
33.5 Takagi et al. (2006)
82 Mazzuca-Sobczuka and Chisti (2010)
N.R. Xiong et al. (2008)
54 Liang et al. (2009)
N.R. Matsunaga et al. (2009)
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suggestions are: a) to recover the nutrients found in wastewater
to cultivate the microalgae at a low cost with the additional benefit
of eliminating pollutants from the environment (Park et al., 2011;
Pittman et al., 2011); b) to combine the production of microalgae for
biofuels with the production of bulk chemicals, food and feed ingredi-
ents (Wijffels and Barbosa, 2010); c) to use a biorefinery-based pro-
duction strategies (Chisti, 2007; Milledge, 2010; Singh and Gu, 2010;
Subhadra, 2010); d) to integrate microalgae cultivation with fish-
farms, food processing facilities and wastewater treatment plants
(A. Singh et al., 2011); e) to improve the capabilities of microalgae
through genetic engineering and advances in engineering of photo-
bioreactors (Chisti, 2007); f) to carry out more research to understand
and potentially manipulate algal lipid metabolism (Greenwell et al.,
2010); g) to apply amultidisciplinary approach inwhich systems biol-
ogy, metabolic modeling, strain development, photobioreactor design
and operation, scale-up, biorefining, integrated production chain, and
the whole system design (including logistics) are considered (Wijffels
et al., 2010); h) to consider anaerobic fermentation for biogas produc-
tion as a final step in future microalgae-based biorefinery strategies
(Mussgnug et al., 2010); i) to integrate the co-digestion of microalgae
with wastewater sludge for biogas production (Kumar et al., 2010);
j) to optimize the algal production and harvest fromwastewater treat-
ment High Rate Algal Ponds (HRAPs) because they are presently con-
sidered bymany research groups as themost economically viable way
to produce algal biomass for converting waste to biofuels with mini-
mal environmental impact (Park et al., 2011); and k) to significantly
improve the efficiency, cost structure and ability to scale up algal bio-
mass production, lipid extraction, and biofuel production (Singh and
Olsen, 2011).

In agreement with some of these recommended strategies, this re-
view focuses on dual purpose systems aimed at treating wastewater
with microalgae that are potential biofuel sources and that can also
produce other non-fuel products within a Biorefinery strategy.

1.2. The strategy of using dual purpose microalgae–bacteria-based
systems for treating wastewater and for producing biodiesel

Dual purpose systems that use microalgae for treating wastewater
and producing biodiesel and chemical products are gaining popu-
larity and are an attractive alternative to microalgae-based systems
aimed solely at biodiesel production. Pittman et al. (2011) recently
found that dual-use microalgae cultivation for wastewater treatment
coupled with biofuel generation is an attractive option for reducing
energy, fertilizer and freshwater costs, as well as reducing green-
house gas emissions. Furthermore, Park et al. (2011) showed that
the costs of algal production and harvesting using wastewater treat-
ment in High Rate Aeration Ponds are essentially covered by the
wastewater treatment plant capital and operation costs and thus
have significantly less environmental impact, in terms of their water
footprint, energy and fertilizer use, compared to cultivation systems
that use freshwater and fertilizer. A multi-national group of re-
searchers (Kumar et al., 2010) also noted that microalgae-mediated
CO2 fixation and biofuel production can become more sustainable
by coupling microalgal biomass production with existing power gen-
eration and wastewater treatment infrastructures. Furthermore, cul-
tivating microalgae consumes more commercial fertilizers compared
to most common oleaginous plants. For instance, microalgae culti-
vation shows an N-fertilizer consumption in the range of 0.29 to
0.37 kg/kg oil, which is higher than that for Jatropha (0.24 kg/kg oil)
and is nearly ten times higher than that for oil palm (0.048 kg/kg
oil) (Lam and Lee, 2012).

Although there are some who argue that using wastewater as a
source of nutrients poses contamination risks and that using fertilizer
and freshwater should be preferred, some recently published Life
Cycle Analysis (LCA) have confirmed that the use of wastewater for
biofuel production with microalgae is a very useful approach to
ensure the economic viability and the sustainability of the whole bio-
fuel production process. LCA is a systems approach aimed at evaluat-
ing the environmental burden associated with the entire life cycle of
the product of interest (e.g., microalgae) to avoid problem-shifting
between life cycle stages and to identify technological innovation op-
portunities (Kumar et al., 2010). Another definition, ISO 10440, estab-
lishes that LCA is a “compilation and evaluation of the inputs and
outputs and the potential environmental impacts of a product system
throughout its life cycle” (Pfromm et al., 2011).

Lardon et al. (2009) carried out a LCA to assess the energetic bal-
ance and the potential environmental impacts of the whole process
chain, from biomass production to biodiesel combustion. The key ob-
jective of this study was to identify the obstacles and limitations that
should receive specific research efforts to make this process environ-
mentally sustainable. The results indicated the necessity of decreas-
ing the energy and fertilizer consumption of the process. Clarens
et al. (2010) provided a stochastic life cycle model of algae cultivation
processes compared to other biofuel feedstocks, namely, switchgrass,
corn and canola, to understand which biofeedstocks produced the
most biomass energy with the lowest environmental burden. Their
results indicated that algae cultivation using freshwater and fertilizer
addition had higher environmental impacts than the other feedstocks
in terms of the energy use, greenhouse gas emissions and water
consumption. These authors concluded that the large environmental
footprint of algae cultivation is driven predominantly by upstream im-
pacts, such as the demand for CO2 and fertilizer. They recommended
that flue gas and, more importantly, wastewater could be used to off-
set most of the environmental burdens associated with algae. Another
Life Cycle Analysis focusedmainly on the water and nutrient demands
for microalgae-based biodiesel production (J. Yang et al., 2011) and
found that there was a 90% reduction in the use of freshwater when
wastewater was used to cultivate themicroalgae. Furthermore, the re-
quired nitrogen was reduced by 94%, and the need for added potas-
sium, magnesium, and sulfur from fertilizer was reduced 100% by
replacing freshwater with wastewater. The same study indicated the
usefulness of water recycling and established that 3726 kgwater is re-
quired to generate 1 kg microalgae biodiesel if freshwater is used
without recycling.

The results from other recent Life Cycle Analysis studies have also
confirmed that substitutes for fertilizers currently used for cultivating
the microalgae are needed and that this cultivation could easily in-
clude the production of co-products to improve the Energy Balance
Ratio and the sustainability of the whole process. A LCA in which
the energy and carbon intensity of the whole process of producing
microalgae-based biodiesel was evaluated (Shirvani et al., 2011), in-
dicated that current algae biodiesel production is 2.5 times as energy
intensive as conventional diesel because energy input is both directly
and indirectly needed for the production of fertilizers, ponds, and
harvesting facilities, as well as transport. The authors concluded that
the production costs can be partially lowered by displacing costly
grid heat and electricity through the usage of oilcake residues via a
combined heat-and-power unit and the use of glycerol as a livestock
feed. The carbon footprint of the algae-to-biodiesel carbon cycle can
only be minimized through the successful decarbonization of the
heat and electricity grid and the sourcing of all indirect energy re-
quirements for fertilizers, transport and building materials from low-
carbon energy sources. Furthermore, the reliance on fossil-based CO2

from power plants or fertilizer production renders algae diesel
unsustainable in the long term based on a thorough mass balance ap-
proach to assess the sustainability of biodiesel production frommicro-
algae (Pfromm et al., 2011).

1.3. The Biorefinery strategy

According to the International Energy Agency (IEA, 2008), a Bio-
refinery has been defined as “the sustainable processing of biomass
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into a spectrum of marketable products and energy”. Additionally, a
biorefinery may be defined as a facility that integrates biomass con-
version processes and equipment to produce fuels, power, materials
and/or chemicals from biomass (Cherubini, 2010; Singh and Gu,
2010). An extensive discussion of the biorefinery concept was re-
cently published, emphasizing the integration of green chemistry
(Cherubini, 2010) and of microalgae-based biorefinery and the wide
spectrum of possible products (Singh and Gu, 2010; Subhadra, 2010).

This work reviews the most recent and relevant information relat-
ed to the application of the biorefinery strategy using microalgae and
cyanobacteria for treating wastewater to simultaneously produce
biofuels and high added value products. Detailed information regard-
ing several aspects of the treatment of municipal and animal waste-
water with microalgae is provided. Additionally, some alternative
technologies aimed at harvesting the biomass at a low cost are also
reviewed because this step is one of the most common economic con-
straints in producing microalgae as a source of biodiesel. Finally, a
dual purpose system is proposed that treats municipal wastewater
with oleaginous microalgae and in separate raceways treats the efflu-
ents from anaerobically digested piggery wastewater using a well-
known species, such as Arthrospira, to enhance the production of
high added value products.

2. Treatment of municipal wastewater with
microalgae–bacteria-based systems

The work of Oswald and his group (Oswald, 1963, 1988, 1995) in
California more than six decades ago established the foundation for
developing High Rate Oxidation Ponds (HROPs) to treat municipal
wastewater while producing microalgae as a valuable sub-product.
Modern developments use this type of open, shallow pond, also
known as a raceway, to commercially produce certain microalgae and
also to perform phycoremediation in general (Li et al., 2011a; Olguín,
2003; Park et al., 2011). In early work, the main objective of recovering
microalgae was to use them as a source of feed and other chemical
products (Sandbank, 1982). Currently, due to the urgent need for alter-
native and sustainable sources of biofuels, dual purpose wastewater
treatment systems are considered one of the most promising strategies
for producing microalgae to overcome the current economic viability
limitations of large-scale processes for producing biodiesel frommicro-
algae (Park et al., 2011; Pittman et al., 2011). This section reviews the
more recent developments in this field and also highlights previous
work, which may help to answer some of the questions driving most
of the current research work.

2.1. Are there enough nutrients in municipal wastewater to support high
microalgae productivity?

Several reports have focused on using certain fractions of munici-
pal wastewater, trying to demonstrate that high biomass productiv-
ities can be achieved. Researchers have used settled raw sewage,
primary settled sewage, activated sewage, primary clarifier effluent,
secondarily treated sewage and a fraction derived from the activated
sludge thickening process (Li et al., 2011a). The following section pro-
vides a summary of the most recent efforts to evaluate various types
of wastewater for maximum biomass production.

Typical concentrations of ammonia nitrogen and phosphates in
secondary-treated wastewater fall into the ranges of 20–40 mg L−1

and 1–10 mg L−1, respectively, which are adequate to support high
productivities from most fresh water microalgae strains (McGinn
et al., 2011). However, the inorganic N/P ratio varies with the differ-
ent fractions of wastewater within a municipal wastewater treatment
plant (Wang et al., 2010). Those fractions collected before and after
the primary settling showed N/P ratios of 5.9 and 4.7, respectively,
while a range of approximately 6.8–10 is considered optimal. Con-
versely, the N/P ratio of the effluent from the activated sludge process
was 53.2, much higher than the optimal ratio, indicating a high phos-
phorus limitation. On the other hand, the N/P ratio of the centrate
(the liquid from the activated sludge thickening process) was 0.36,
much lower than the optimal ratio, indicating a high nitrogen limita-
tion. Although there were some nutrient limitations, the specific
growth rate of the microbial population observed in each fraction
was in the range of 0.343 to 0.948 day−1 and was the lowest for the
secondary effluent and the highest for the centrate. Wang et al.
(2010) concluded that the centrate is the best wastewater fraction
within a treatment plant for achieving higher microalgae biomass
productivity, while also removing a high percentage of nutrients.

Following the recommendation on using centrate, a very recent
work (Li et al., 2011b) implements this innovative approach.
According to these authors, centrate is rich in nutrients, including
phosphorus, ammonium, and organic matter, reflected in a COD of ap-
proximately 1300 mg L−1. They showed that a Chlorella strain isolated
fromwastewater was able to reach a productivity of 0.92 g L−1d−1 in
continuous cultures on a bench scale. In batch cultures, the Chlorella
strain showed a biomass yield of approximately 1.1 g L−1 and a bio-
diesel yield of 0.12 g L−1 of algae culture, with a fatty acid methyl
ester (FAME) content of 11% of dry biomass. These productivities are
comparable or higher than those previously reported for other frac-
tions of municipal sewage.

Supplementation with CO2 in the municipal wastewater is expected
to increase the algal biomass productivity. In fact, Woertz et al. (2009)
found that when they sparged CO2 into semi-continuous cultures of a
microalgae consortium cultivated in primary clarifier effluent, the
algal biomass, estimated as the Volatile Suspended Solids (VSS), in-
creased from 317 to 812 mg/L, and the lipid productivity increased
from 9.7 to 24.4 mg L−1 d−1 in cultures operated at a Hydraulic Reten-
tion Time (HRT) (i.e., a measure of the average length of time that a
soluble compound remains in a bioreactor) of 3 days. On a large scale,
the external source of CO2 should be inexpensive. There have been
several proposals that suggest thatmicroalgae cultivation plants or bio-
refineries should take advantage of residual CO2 from thermo electrical
plants (Van den Hende et al., 2011). When this strategy is not feasible,
considering the costs of cleaning the exhaust gases, another alternative
is to provide CO2 from biogas (a mixture of CO2 and methane) as pro-
posed in Section 3.1.

The use of treatedwastewater requires additional nutrients to sup-
port algae growth. Supplementing wastewater with 5 mM NaNO3 has
been recommended for maximal biomass productivity of Chlorella
spp. cultivated in post-chlorinated wastewater, while supplementa-
tion with 25 mM of NaNO3 was required to achieve a high increase
in the lipid yield (Mutanda et al., 2011). Thus, using treated wastewa-
ter requires adding extra nutrients. Other sources of low-cost nutri-
ents could be added as suggested in the next section to avoid using
fertilizers.

2.2. Which feedstocks can serve as nutrient supplements for
weak wastewater?

Section 1.2 mentioned that adding commercial fertilizers as a
source of nutrients for microalgae cultivation increases the cost of
the biomass to such a level that biodiesel production becomes non-
competitive and unsustainable. Thus, other sources of nutrients that
could be used as additives for weak wastewater should be selected
according to the geographical location and the specific needs of the
microalgae or cyanobacteria cultivation system. Apart from the
need for CO2 as a carbon source, the twomore important nutrients re-
quired for microalgae growth are N and P. Their ratio should be close
to the optimum nitrogen-to-phosphorus stoichiometry encountered
in phytoplankton, which has been described to fall in the range 8–45
(Klausmeier et al., 2004). The chemical composition of various high
organic strength and nutrient content wastewaters (Table 2) indicates
that their N/P ratio is adequate for promoting microalgae growth,



Table 2
Composition of different wastewaters with high organic strength and nutrient content.

Source COD BOD TN TP N/P NH4-N Reference

Soybean processing wastewater 5000 –16,300 2250–8000 1700–2550 125–183 13.6–13.9 71–140 Zhu et al. (2012)
Sugar cane vinasses 100,000–150,000 – – 600–4200 100–3800 1.10–6 – – Tang et al. (2006)
Sugar cane stillage 135,867 61,350 2975 238.50 12.5 432.50 Olguín et al. (2008)
Piggery wastewater 17,640 – – – – 58.5a – – 1931 Patil et al. (2010)
Meat processing wastewater 1544 646 – – – – – – – – Wahaab and El-Awady (1999)

All parameters units are mg L−1.
a Soluble phosphorus.
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although it is possible that dilution or pre-treatment could be neces-
sary to avoid inhibiting growth by turbidity or high organic matter
content. Furthermore, the preferred pretreatment of this type of
wastewater is anaerobic digestion (Olguín, 2000), with the advantage
of obtaining biogas, which serves as source of methane as well as
source of CO2. The latter gas can be fed into microalgae cultivation
ponds/photobioreactors, with the additional advantage of increasing
the productivity, as mentioned above. The chemical composition of
anaerobic effluents (digestate) from various digestedwastes also indi-
cates an adequate N/P ratio (Table 3). One of the most important
advantages of using anaerobic effluents as additives for weak waste-
water is that they are also a source of dissolved CO2 in the form of
bicarbonate (Table 3). In fact, various kinetic parameters of the culti-
vated microalgae species indicate that the use of anaerobic effluents
provided sufficient N and P, as well as additional nutrients, including
bicarbonate. Furthermore, anaerobic effluents could also serve as a
source of organic acids for the heterotrophic growth of microalgae.
The anaerobic effluents from stillage or distillage wastewater from
ethanol produced from cassava contain acetic acid (2.0 to 4.0 g/L),
propionic acid (1.0 to 3.0 g L−1) and butyric acid (0.4 to 2.5 g L−1)
(Zhang et al., 2010).

Finally, highly polluted urban rivers, which contain mainly organic
matter and small concentrations of toxic or recalcitrant pollutants,
could be used as another source of water for microalgae cultivation.
One group is researching using anaerobic effluents of diluted raw
wastes as the source of additional nutrients to enrich the water
from an urban polluted river in Mexico (Olguín et al., 2010) for culti-
vating microalgae/bacteria consortia with the potential for biofuel
production (Olguín et al., unpublished results). A similar approach
using waste-enriched seawater could be harnessed to cultivate ma-
rine microalgae with the potential for biodiesel production.

2.3. How efficient are microalgae–bacteria-based systems at
removing nutrients?

The economic viability of the dual purpose systems within a Bio-
refinery depends on several factors; one major factor is the efficiency
of the microalgae–bacteria systems at removing nutrients and anoth-
er important one is how much these factors contribute to the cost-
benefit analysis.

The Hydraulic Retention Time (HRT) determines both the nitrogen
removal efficiency and the distribution of nitrogen forms in the efflu-
ent of a High Rate Oxidation Pond treating municipal sewage (García
et al., 2000). These authors reported that the annual average nitrogen
removal was 73% for ponds operating at a higher HRT, compared to a
removal of 57% observed at a lower HRT. They also concluded that the
main removal mechanism for ammonia nitrogen was stripping, due
to the high pH, followed by algae uptake.

Wang et al. (2010) have compiled data from early work performed
with settled domestic sewage and secondary-treated domestic efflu-
ent supplemented with settled swine wastewater and reported that
in all of these cases, the N removal efficiency was in the range of 92–
95% although the phosphate removal efficiency was lower, approxi-
mately 62–80%. In this study, various fractions of the sewage in a
MSTP were compared (mentioned in Section 2.1). The removal rates
of N-NH4 were 82.4%, 74.7%, and 78.3% for wastewaters before and
after the primary settler (stream 1 and 2) and after the sludge centri-
fugation (stream 4), respectively, by a Chlorella sp. strain. However,
these authors did not find N-NH4 removal in the effluent from the ac-
tivated sludge tank (stream 3), but they registered a 6.3-fold increase
in the NO2-N concentration, indicating an active denitrification pro-
cess. The phosphate removal rates for the same study were 83.2%,
90.6%, and 85.6%, and the COD removal rates were 50.9%, 56.5%, and
83.0%, for streams 1, 2 and 4, respectively. In stream 3, only 4.7% of
phosphorus was removed, and the COD increased slightly.

Thus, it seems that no generalizations can be made because the
COD removal efficiency depends on various factors, such as the char-
acteristics of the specific type of wastewater utilized andmore impor-
tant, the microalgae species or microbial consortia involved.

2.4. Which species perform better for higher biomass and
lipid productivity?

Several different microalgae species have been tested under various
experimental conditions (e.g., nutrient starvation, nitrogen starvation,
nitrogen deficiency, nutrient sufficiency, heterotrophic conditions)
and their lipid content and the lipid productivity of the culture have
been reported (Table 1). However, only a few of them have been culti-
vated using municipal wastewater. As mentioned in Sections 2.1 and
2.2, the Chlorella species have been preferred over other microalgae
bymany researchers (Bhatnagar et al., 2010; Chu et al., 2009), especially
because they are usually isolated from sewage treatment plants and can
be considered as autochthonous species. In fact, Chlorella kessleri was
found to produce a very high biomass density (2.01 g L−1) when culti-
vated in the fraction of municipal wastewater known as centrate (Li
et al., 2011b).

Natural consortia of variousmicroalgae genera might be established
during wastewater treatment operations, as reported by Woertz et al.
(2009). The consortium was dominated by Chlorella, Micractinium and
Actinastrum and had a maximum lipid productivity of 24 mg L−1d−1

at a Hydraulic Retention Time of 3 days using primary clarifier effluent.
Other microalgae have been used due to their special attributes.

Botryococcus braunii has been selected by some researchers because
it is a colonial chlorophyceae (green microalga) that produces extra-
cellular polysaccharides (EPS), is widely distributed on all continents
in freshwater, brackish and saline lakes and is able to accumulate
unsaturated long-chain hydrocarbons at a concentration of 15% to
75% of its dry weight (Orpez et al., 2009). B. braunii UTEX 572 has
been cultivated in secondarily treated piggery wastewater, yielding
0.95 g L−1 hydrocarbons (An et al., 2003).

In a recent study (Li et al., 2010a), an interesting strain of
Scenedesmus sp. LX1 was isolated from stored tap water and was com-
pared against other 11 strains. This strain showed the highest yield
(0.11 g L−1), highest lipid content (31–33%) and a maximum lipid
productivity of 8 mg L−1 d−1 on day 10 in a batch culture using sec-
ondary effluent as the culture medium. In another study performed
with the same strain (Li et al., 2010b), different nitrogen sources
were tested. High removal percentages of total nitrogen (90.4% and
87.8%, respectively) and total phosphorus (nearly 100%) were ob-
served when nitrate or urea was used as the nitrogen source. When
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ammonium was used as the nitrogen source, Scenedesmus sp. LX1
reached a very high specific growth rate of 0.82 d−1 (after 6 days of
cultivation), although it was inhibited later on due to a decrease in
the pH.

Chlamydomonas reinhardtii is another microalgae with the potential
to produce oil and treat wastewater simultaneously (Kong et al., 2010).
It was cultivated in wastewaters taken from three different stages of a
municipal wastewater treatment plant (influent, effluent and centrate).
High biomass productivity was found (2.0 g L−1d−1), with an oil con-
tent of 25.25% when cultured in a biocoil using 100% centrate. Under
such conditions, a lipid productivity of 505 mg L−1d−1 was achieved,
which may be the highest lipid productivity reported for microalgae
in wastewater and is most likely because centrate is very rich in nutri-
ents, as mentioned in Section 2.1.

Two major conclusions may be drawn from this subsection. One is
that no specific species is the best for higher biomass and lipid pro-
ductivity when used to treat wastewater. The species selection de-
pends on various factors, such as the specific characteristics of the
wastewater, the original habitat of the algal strain and the climatic
conditions in the treatment plant, among others. In some cases, a nat-
ural selection of consortia of various microalgae will occur spontane-
ously. Thus, isolating and screening microalgae/cyanobacteria or their
consortia from various wastewater streams are a very relevant field of
research for selecting new strains or for carrying out research related
to poorly known species with high potential for biodiesel production.
During such screening processes, the use of dyes such as Nile red
(a selective fluorescent stain for intracellular lipid droplets) or
Sudan III (a lysochrome or fat-soluble dye used for staining of triglyc-
erides and other cell lipids), is highly recommended. Furthermore,
the use of Sudan III has been described as a fast and easy technique
for staining microalgae lipids that does not require sophisticated
equipment, which is in contrast to the use of Nile red (Loera-
Quezada et al., 2011). A second conclusion is that the total lipid con-
tent of microalgae cultivated in wastewater may be lower than the
one observed in synthetic medium. Thus, a trade-off balance should
be considered where the advantages of using wastewater might be
accompanied by lower lipid productivity than a more costly system
fed with fertilizers. Furthermore, a cost-benefit analysis should be
undertaken to justify such supplementation in cases in which the nu-
trients might not be sufficient for supporting algae growth and nutri-
ent supplementation is necessary. The latter situation would apply to
the use of treated wastewater at the end of the treatment sequence.
The use of anaerobic effluents from animal or any other high strength
organic waste as the nutrient source within integrated systems
or Biorefineries also produces biogas during the anaerobic digestion
of the waste. Additionally, mixotrophic cultures of microalgae/
cyanobacteria can be established because organic acids are present
in these anaerobic effluents.
2.5. What is the effect of potentially toxic compounds found in municipal
wastewater?

Municipal wastewater contains several compounds that are po-
tentially toxic to microalgae, such as heavy metals and other recalci-
trant compounds, especially as they mix with industrial wastewater.
Heavy metals are potent inhibitors of microalgal photosynthesis be-
cause they can replace or block the prosthetic metal atoms in the ac-
tive site of important enzymes (Kumar et al., 2010). The maximum
specific growth rate and biomass productivity of B. braunii cultivated
in secondary effluents of a municipal sewage treatment plant were
lower than those observed in a control synthetic medium, and the au-
thors noted that the decrease in the value of such parameters could
be due to the presence of phenolic compounds and heavy metals in
the wastewater (Orpez et al., 2009). Although these types of studies
are relevant, very few researchers have reported the effect of toxic
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compounds on biomass and lipid production, providing a niche op-
portunity for future research.

2.6. Do the energy balance and the economic viability of biodiesel
production from microalgae improve when using wastewater?

The answer to this question is one of the most important chal-
lenges in current research. However, very few studies have answered
it and provided concrete answers. Feng et al. (2011) performed anal-
yses of the energy efficiency in semi-continuous cultures of C. vulgaris
using synthetic wastewater, showing that the Net Energy Ratio for
lipid production with a daily replacement of 50% of the culture vol-
umewas higher than the unit, reaching a value of 1.25. Positive values
indicate a feasible process in terms of energy because this parameter
is the ratio of the energy produced (energy content of the oil and re-
sidual biomass) over the energy requirements (Singh and Gu, 2010).
Additionally, their cost analyses showed that the algal biomass could
be competitive in the world market if the cost of a petroleum barrel
was equal to or greater than US$63.97, adding an additional credit
for the wastewater treatment. In fact, Feng et al. (2011) calculated
that 1443 m3 of wastewater is treated during the production of
1 ton of algal biomass. Thus, if the credit for wastewater treatment
at US$0.4/m3 is counted, the cost of producing 1 ton of biomass is re-
duced from US$808.79 to US$231.59. The system was able to remove
86% of COD, 97% of N-NH4 and 96% of TP, respectively.

An energy balance of the microalgal production coupled with the
nutrient removal from wastewater was performed in open ponds
(Sturm and Lamer, 2011). The results showed that biofuel production
was energetically favorable for open pond reactors that used waste-
water as a nutrient source, even without an energy credit for nutrient
removal. Direct combustion of the algal biomass may be a more viable
energy source than biofuel production, especially when the lipid con-
tent of dry biomass (10% in this field experiment) is lower than the
high values reported in lab-scale reactors (50–60%).

In conclusion, the use of dual purpose microalgae–bacteria-based
systems for treating wastewater and producing biodiesel can improve
energy efficiency, achieving positive values of the Net Energy Ratio
and can improve the economic viability of the process. Furthermore,
this type of comprehensive analysis needs to be applied to a variety
of processes, especially at pilot and large scales; thus, there is a clear
need for further research in this field, offering a niche opportunity.

3. Treatment of animal wastewater with
microalgae–bacteria-based systems within Biorefineries

3.1. Animal waste as a cause of eutrophication and source of greenhouse
gases (GHG) emissions

The use of animal wastewater for cultivating microalgae within a
biorefinery serves a dual purpose of providing a source of water and
nutrients for the microalgae and simultaneously treating this type of
India

Brazil

China

USA

EU-27

RW

Fig. 1. The first five countries according to the number of animal heads encountered in each
2011).
noxious and abundant wastewater to avoid eutrophication of surface
and ground water bodies, as well as reducing greenhouse gases
(GHG) emissions. Animal waste, also known as manure, is rich in or-
ganic matter, nitrogen (N) and phosphorus (P) and is excreted as a
high percentage of the animal's weight. Pig and poultry manure are
among the most polluting wastes due to their higher organic matter
contents in terms of the Biological Oxygen Demand (BOD) and the
N and P contents compared to other animal wastes (Laliberté et al.,
1997).

The lack of proper procedures for manure storage and handling
contributes the most toward marine eutrophication and terrestrial
acidification and had the greatest impact on climate change in a Life
Cycle Assessment (LCA) of the impacts of a large scale swine produc-
tion facility in the Northern U.S. (Stone et al., 2010). Large-scale live-
stock operations are a major contributor (55.8%) of phosphorus to
local surface waters in central China according to a phosphorus-flow
analytical model developed using substance flow analysis (Yuan et
al., 2011).

The problem of manure storage and handling is more acute in cer-
tain regions of the world in which large-scale production facilities
lack the infrastructure to appropriately process and dispose of the
waste. In countries in which a large number of animal heads are
encountered (Fig. 1), the development of biorefineries for animal
waste treatment with tandem microalgae biofuel production offers
a large opportunity for developing new business, as well as treating
the animal wastewater and enhancing environmental conservation.
Although very little work has been reported using chicken manure
for microalgae cultivation (Ungsethaphand et al., 2009), this type of
waste seems to be very relevant in countries registered as the first
five producer countries (FAOSTAT, 2011).

Anaerobic digestion has been proposed, and implemented in some
cases, as the most appropriate technology for handling animal ma-
nure (Olguín, 2000). There are three clear benefits of this technology:
a) the energy recovery from produced biogas, b) a net reduction in
the emissions of greenhouse gases and c) a large increase in the over-
all productivity of the farming system (Michel et al., 2010). Addition-
ally, anaerobic digestion produces maximum electricity from animal
waste because biogas can be converted to electricity at high efficiency
in a gas engine, while producing heat to run the digestion process
(Prapaspongsa et al., 2010).

3.2. Use of microalgae–bacteria-based systems for treating raw or
pre-treated animal manure

There have been some efforts to use raw or pre-treated animal
manure as a source of nutrients for cultivating microalgae, which
have been previously reviewed (Laliberté et al., 1997; Olguín, 2003;
Pittman et al., 2011). In this section, a brief summary of the research
performed only at pilot plant outdoor facilities is reviewed, together
with some other recent work, to provide data for further work in scal-
ing up efforts in the short and medium term.
China China
USA USA
Brazil Indonesia
Germany Brazil
Vietnam Mexico
RW RW

one: (1) cattle (2) pigs and (3) poultry. RW — rest of the world. (Data from FAOSTAT,
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3.2.1. Treatment systems using green microalgae and cyanobacteria
The dominance of one particular species within a consortium of

microalgae is determined by a higher tolerance towards the concentra-
tion of ammonia nitrogen in solution compared to other species in the
context of animal, and specifically piggery, wastewater (de Godos
et al., 2010). A comparative study was performed on two green micro-
algae (Scenedesmus obliquus and Chlorella sorokiniana), one cyanobacte-
rium (Arthrospira platensis), one euglenophyte (Euglena viridis) and two
microalgae consortia to evaluate their behaviors during the biodegrada-
tion of diluted piggery wastewater in batch tests. C. sorokiniana and
E. viridis tolerated high ammonia concentrations, while the othermicro-
algae were inhibited. C. sorokiniana showed the highest tolerance and
was able to dominate in a continuous algal–bacterial photobioreactor
initially inoculated with C. sorokiniana, S. obliquus and S. platensis.
The authors found that nitrogen assimilation into the algal–bacterial
biomass most likely only occurred via the ammonia nitrogen re-
moval mechanisms in this system. Another study used a microalgae–
bacteria-based system (dominated by Oocystis sp. and Scenedesmus
sp.) to treat anaerobic effluents from piggery waste. By comparing
two different configuration bioreactors, nitrogen recovery by biomass
assimilation was higher in the open configuration reactors, ranging
from 38 to 47%, than in the closed type reactors (31%) (Molinuevo-
Salces et al., 2010).

In a recently published work (Levine et al., 2011), the oleaginous
green algae Neochloris oleoabundans was cultivated using anaero-
bically digested dairy manure in batch cultures. The microalgae
assimilated 90–95% of the initial nitrate and ammonium and con-
tained 10–30% fatty acid methyl esters (by dry weight) after 6 days
of cultivation. The authors mentioned that more work is needed to
clarify the role of N deficiency and the influence of the pH on the
lipid accumulation. A recent report used Ettlia oleoabundans (former-
ly known as N. oleoabundans) at a lab scale to process diluted (2% v/v)
anaerobic digesters effluents from catfish processing waste, soybean
field waste, and rice hulls (Y. Yang et al., 2011). All three effluents
were deficient in phosphate and nitrate but were richer in ammonia
and urea than the standard BBM medium. Although the best growth
was observed with 2% (v/v) soy effluent, scant oil content was ob-
served in the cells cultivated using all of the effluents. When the
three effluents were mixed, the oil content in the biomass increased
up to six fold, depending on the age of the effluent, although the
growth rate did not increase significantly. Thus, this work indicates
that more research work is needed at the biochemical and physiolog-
ical levels to understand the inhibitory factors of lipid accumulation
during cultivation of microalgae in waste streams.

Research on various carbon sources for the mixotrophic cultiva-
tion of microalgae has indicated that acetate can be used as a carbon
source for Chlorella vulgaris, an organism with the potential for oil ac-
cumulation and biodiesel production (Heredia-Arroyo et al., 2011).
Acetate is encountered in the effluents of anaerobic digesters under
certain operational conditions; thus, anaerobic effluents could be
used to cultivate green microalgae, similar to previous research on
mixotrophic cultures of cyanobacteria of the genus Arthrospira (see
Section 3.2.2).

3.2.2. Treatment systems using cyanobacteria of the genus Arthrospira
with the recovery of high added value products

Cyanobacteria are usually a part of the microalgae group because
they are a large and widespread group of photoautotrophic microor-
ganisms that are able to perform oxygenic photosynthesis (similar to
that of the chloroplasts), although they show typical prokaryotic fea-
tures (Whitton and Potts, 2000). The cyanobacteria of the genus
Arthospira (formerly known as Spirulina) is one of the very fewmicro-
algae/cyanobacteria cultivated on a large commercial scale because it
is a source of nutraceuticals, poly-unsaturated fatty acids (PUFAs) and
pigments and can be sold as a supplement for human and animal con-
sumption (Vonshak, 1997). C-phycocyanin (C-PC) is a blue pigment
with fluorescent and antioxidative properties that is found in cya-
nobacteria, rhodophytes and cryptophytes (Eriksen, 2008). It can be
extracted and purified using a simple low-cost procedure (a modi-
fication of the non-chromatographic, rivanol-sulfate method) al-
ready reported to be very efficient when applied to A. maxima and
A. fusiformes with recovery rates of 54% and 55% (w/w) from the
crude extract, respectively (Minkova et al., 2007).

Phycocyanin and polyunsaturated fatty acids (PUFAs) of the genus
Arthrospira are known to promote immune system health in human
beings and animals (Belay et al., 1993, 1996). More recently, using
A. platensis as a dietary supplement (5.0 g Arthrospira kg−1 diet)
(Abdel-Tawwab and Ahmad, 2009) was found to promote growth
and immunity when fed to Nile tilapia, Oreochromis niloticus, while
the fish were challenged by pathogenic Aeromonas hydrophila. Fur-
thermore, supplementation of the common carp (Cyprinus carpio)
with Arthrospira induced a significantly higher level of survival and
growth compared to supplementation with Lactobacillus acidophilus
and Saccharomyces cerevisiae (Ramakrishnan et al., 2008).

Thus, it is clear that using the genus Arthrospira within a bio-
refinery provides ample benefits, especially if it is produced at low
cost, and can recover nutrients from wastewater. In countries in
which legislation could prohibit the use of Arthrospira as a feed source
when produced using wastewater, its use as a source of nutraceu-
ticals, poly-unsaturated fatty acids (PUFAs) and pigments completely
justifies its production. Thus, a review of the various reports that use
Arthrospira (Spirulina) to treat animal wastewater is presented below.

There are several advantages in using this particular microorgan-
ism in phycoremediation (Olguín et al., 2003a): a) its capacity to floc-
culate makes harvesting easier and cheaper than for other microalgae,
b) its biomass has the highest possible protein content (60–70% d. wt.)
when grown under N excess conditions, c) it has been used successful-
ly as a feed supplement for mammals and fish larvae, d) its content of
polyunsaturated fatty acids (PUFAs) is high under certain culturing
conditions (Olguín et al., 2001), e) it can be enriched in polysaccha-
rides and used as a bioadsorbent for heavy metals (Hernández and
Olguín, 2002), f) its ability to grow at high pH values reduces con-
tamination by other species, g) some strains can grow at a very high
NH4-N concentration (130 mg L−1) (Olguín and Martínez, unpub-
lished data) and h) some strains can grow under heterotrophic and
mixotrophic conditions.

An integrated system developed for producing Arthrospira maxima
while treating piggery wastewater has been evaluated at the labora-
tory level (Olguín et al., 1994) in outdoor raceways under sub-
tropical (Olguín et al., 1997) and tropical conditions in México
(Olguín et al., 2003a). The system has the advantage of producing bio-
gas from the piggery waste, while also producing valuable Arthrospira
maxima biomass for fish feed or as a source of pigments and
nutraceuticals. After treating the piggery waste in anaerobic filters,
the anaerobic effluents were treated using raceways containing di-
luted sea water (1:4) and anaerobic effluents (2% v/v) inoculated
with Arthrospira maxima. Under tropical conditions, the maximum
productivity of semi-continuous cultures in 23.6 m2 ponds (con-
taining 4720 L when operating at a column height of 0.2 m) during
the summerwas15.1 g m−2 d−1, equivalent to 55.12 ton ha−1 year−1.
The average annual productivity evaluated during 4 consecutive
years, was 11.8 g m−2 d−1, which is the highest value reported
for an Arthrospira production system using seawater. The average
protein content of the semi-continuous cultures was 48.9% ash-
free dry weight. The NH4-N removal rate was in the range of 84–
96% and the P removal was approximately 72–87%, depending on
the depth of the culture and the season. More recently, a similar
process was evaluated in Thailand using A. platensis and effluents
(20%) from an up-flow anaerobic sludge blanket (UASB) digester
processing piggery waste, supplemented with 4.5 g L−1 sodium
bicarbonate and 0.2 g L−1 urea fertilizer. The average productivity
of a semi-continuous culture grown under outdoor conditions in a
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100 liter pond was 12 gm−2d−1. The biomass contained approximately
57.9% protein, 1.12% gamma-linolenic acid and 19.5% phycocyanin
(Chaiklahan et al., 2010). Thus, both systems, one developed earlier in
México and one developed recently in Thailand, promoted a similar aver-
age Arthrospira productivity of approximately 12 g m−2 d−1, equivalent
to 43.8 ton ha−1 year−1,with amaximumof 55.12 ton ha−1 year−1 reg-
istered inMéxico during the summer, demonstrating that anaerobic efflu-
ents from piggery waste can be treated while simultaneously recovering
of high yields of this valuable cyanobacterium and generating of biogas.
In fact, the system developed in México was called “Bioespirulinema”
(Olguín, 2000) because it also produces lemnaceae, which can be used
as poultry feed.

The chemical composition of Arthrospira has been found to vary
with environmental conditions, as it is the case with all organisms. It
has been demonstrated that A. maxima had a maximum protein con-
tent (70% dry weight of biomass) and low total lipids (8%) and poly-
saccharide content (7%) in Zarrouk medium when cultures were
exposed to a low irradiance (66 μmol photon m−2 s−1). In contrast,
under nitrogen deficiency in a complex medium when cultures were
exposed to an irradiance of 144 μmol photon m−2 s−1, a minimum
protein content (34%), a maximum polysaccharide content (29%)
and a total lipid content of 18% were observed. The total lipid content
increased to 28.6% when the cultures in the complex medium were
exposed to the lower irradiance (66 μmol photon m−2 s−1). Under
these conditions, a very high percentage (28.13%) of linolenic acid
(18:3), was observed (Olguín et al., 2001). Thus, a combination of ni-
trogen availability and irradiance level was themain factors determin-
ing the cell chemical composition in this particular case. The increase
in PUFAs as a result of culturing Arthrospira at a low irradiance level
was confirmed when 35 Arthrospira strains were grown at 30 °C and
very low irradiance (10 μmol photon m−2 s−1). Furthermore, it was
observed that linoleic, gamma-linolenic acid, and palmitic acid formed
88–92% of the total fatty acid content (Muhling et al., 2005). The in-
crease in the lipid content of A. platensis under nitrogen deficiency
(up to 17.05% of its dry weight) has also been confirmed by a recent
report (Uslu et al., 2011).

Other important factors impacting the growth of Arthrospira have
also been investigated. One report showed a linear relationship be-
tween the rates of A. platensis growth and carbon dioxide removal
from biogas, with 95% efficiency of carbon utilization for biomass pro-
duction (Converti et al., 2009). Supplementing Arthrospira sp. cultures
with 12% CO2 and SO2 and NO promoted a high PUFA content (29.37%)
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Fig. 2. A flow diagram of the stages and operational conditions needed in the establishmen
produce biodiesel and chemical products.
with palmitoleic acid as the predominant fatty acid (41.02%) out of the
total PUFA content (Radmann and Viera-Costa, 2008).

Finally, the most important challenge is scaling up the production
of Arthrospira from the laboratory level to the commercial production.
That transition encounters many unforeseen problems, mostly related
to design, scale, contamination, and external unknown variables, re-
gardless of the type of microalgae culture. Furthermore, downstream
processing also requires a lot of effort, taking special care to harvest
only the biomass greater than the optimal areal density concentra-
tions (Grobbelaar, 2009). Maximum productivities need to be opti-
mized to establish an economically feasible process. In this respect,
at least six important factors have been identified that determine pro-
ductivity in mass algal cultures (Grobbelaar, 2007). These factors are
(1) the culture depth or optical cross section, (2) turbulence, (3) nutri-
ent content and supply, (4) cultivation procedure, (5) biomass con-
centration and areal density, and (6) photo-acclimation. The latter
factor is very relevant because photoinhibition could reduce areal
productivities by up to 30% and more. Furthermore, a significant
loss in the productivity of Spirulina (Arthrospira) in open ponds
has been observed in mid-summer due to high pH and high dis-
solved O2 concentrations (Jiménez et al., 2003). The algal density
in the pond and its productivity were found to reach a maximum
value at pH values below 10.5 and a dissolved oxygen concentration
below 25 mg L−1.

4. A Biorefinery combining dual purpose oleaginous microalgae–
bacteria-based systems for treating wastewater and cultivating
Arthrospira using anaerobic effluents

A flow chart of the various stages needed to establish a wastewa-
ter treatment system utilizing microalgae is shown in Fig. 2, taking
into consideration all the information mentioned in Sections 2 and
3. The first step is to characterize and condition the wastewater
(e.g., adjustment of pH). Selecting the most appropriate species is
another key step and takes into consideration the characteristics of
the wastewater. Thus, fresh water species, such as those shown in
Table 1, could be selected for cultivation in municipal wastewater.
Additionally, isolating native microalgae species from the wastewater
to be treated is highly recommended. An acclimation of the selected
species in the specific wastewater to be used is a required third
step. Using an alternative harvesting technology, such as immobiliza-
tion or biofilm formation (see Section 5), may require pre-treatment
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of the cells. A mixed population of one or more microalgae species
together with a bacterial population will be established as a consor-
tium and will follow a particular population dynamics when esta-
blishing a culture, depending on the setting of optimal culturing
conditions for the species of the most interest. There is a large niche
for research in relation to population dynamics and structure of use-
ful consortia. Controlling grazing and algal species is also a major
problem that requires more research (Park et al., 2011). Furthermore,
the important factors that determine productivity in mass algal
cultures (Grobbelaar, 2007) mentioned in Section 3.2.2. need to be
considered. In this respect, the experience accumulated over a long
period of time dealing with culturing microalgae in outdoor ponds
(reviewed in Borowitzka, 2005) should be taken into account.

Fig. 3 shows the flow chart for a Biorefinery with the double pur-
pose of producing oleaginous microalgae grown in wastewater and
Arthrospira grown in seawater added of anaerobic effluents from ani-
mal waste for the production of biofuels and high added value prod-
ucts, which is an ambitious and original scheme aimed at producing
three different types of biofuels from oleaginous microalgae: biodie-
sel, biogas and hydrogen. Additionally, biogas is generated from ani-
mal waste, and valuable products can be extracted from Arthrospira
biomass, such as phycocyanin and PUFAs, and from the residues of
the biomass (useful as fish feed), which can be commercialized.
Section 3.2.2 mentioned that an integrated system processing piggery
waste through anaerobic digestion was reported that produced bio-
gas and Arthrospira biomass (grown in seawater supplemented with
anaerobic effluents) at a pilot scale (Olguín et al., 2003a). Using sea-
water is a key issue because it provides nutrients and the culture
does not compete for fresh water for agricultural purposes, as previ-
ously highlighted (J. Yang et al., 2011). The produced biogas can be
used as a source of CO2 for the cyanobacteria. As demonstrated
previously (Olguín et al., 1994, 1997, 2003a), high productivities
of Arthrospira can be attained using High Rate Oxidation Ponds
(HROPs), depending on the environmental and culturing conditions.
Furthermore, HROPs or raceways are significantly more environmen-
tally sustainable than closed air-lift tubular bioreactors (Stephenson
et al., 2010). The advantages of using HROPs formicroalgae cultivation
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Fig. 3. A Biorefinery combining dual purpose oleaginous microalgae–bacteria-based system
for the production of biofuels and high added value products.
have been extensively reviewed recently (Park et al., 2011) and are
not dealt with in this review.

On the other hand, cultures of oleaginous microalgae using munic-
ipal wastewater have been already investigated, as mentioned in
Section 2, and are expected to become a consortium of microalgae
and bacteria in which a particular population dynamic will be es-
tablished according to the environmental and culturing conditions.
The use of wastewater is highly recommended because the footprint
of water used is one of the most important factors related to the sus-
tainability of the Biorefineries (J. Yang et al., 2011). Furthermore, an
original attempt to use the nutrients from municipal wastewater,
which has not received proper treatment and has been discharged
into rivers and small streams, is under progress (Olguín et al., un-
published results). A recent study whose goal was to assess the qual-
ity of the water of an urban river polluted by the City of Xalapa in
México (Olguín et al., 2010) indicated that the Sordo River is a poten-
tial source of nutrients for cultivating oleaginous microalgae. This
study could be taken as a model for improving the quality of many
urban and rural rivers in developing countries, especially in regions
where there is not enough infrastructure to treat municipal waste-
water. Thus, treating polluted rivers through phycoremediation
and phytoremediation (Olguín and Sánchez-Galván, 2010) could be
linked to producing oleaginous microalgae (fresh water species).

Flate Plate Photobioreactors (FPPs), built according toMolina-Grima
et al. (1999) and Sierra et al. (2008), have been incorporated in the
Biorefinery (Fig. 4) to achieve high biomass productivities of oleaginous
microalgae and to provide an inoculum for establishing massive
cultures in High Rate Oxidation Ponds (HROPs). A combination of reac-
tors has been already successfully applied for commercial-scale cultiva-
tion of Haematoccocus pluvialis (Huntley and Redalje, 2007) and for the
cultivation of Nannochloropsis sp. for lipid production (Rodolfi et al.,
2009).

Cultures of oleaginous microalgae can be subjected to various
types of physiological stress to enhance the lipid productivity (see
Section 3.2.1). Several reports of cultures in synthetic medium that
provide detailed information about the various factors and strategies
that can be followed may be consulted elsewhere (Hu et al., 2008;
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Subramaniam et al., 2010). Several alternative technologies may be
used for harvesting the biomass of oleaginous microalgae at a low
cost (see Section 5). Finally, the harvested biomass has to be sub-
jected to downstream processing (Fig. 4) to extract the oil or the
non-fuel valuable products and to produce biogas, biodiesel and hy-
drogen from the cell residues, depending on the cultivated micro-
algae species. Detailed information of these processes is outside the
scope of this review and may be consulted elsewhere (Kumar et al.,
2010; Rawat et al., 2011). However, it is important to mention that
the energy density in the microalgal biomass from a variety of species
growing under optimal conditions is remarkably consistent, ranging
between 19 and 25 GJ ton−1, which is similar to the energy density
of bituminous coal (McGinn et al., 2011). Furthermore, the conver-
sion of algal biomass after lipid extraction into methane is a process
that can recover more energy than the energy from the cell lipids
(Sialve et al., 2009). However, three main bottlenecks have been
identified for efficient digestion of the microalgae biomass: a) the bio-
degradability of microalgae can be low; b) ammonia toxicity, if there
is a high protein content, is present in the microalgae biomass and
c) the toxicity of sodium derived from marine species can also affect
the digester performance (Sialve et al., 2009). Despite these limita-
tions, algal productivities in the range of 24–30 ton VS ha−1 year−1

can be produced in a closed-loop system in which the microalgae bio-
mass is converted into biogas, producing 0.5 m3 biogas kg−1algal VS
(De Schamphelaire and Verstraete, 2009). Recent reports about the
production of hydrogen from microalgae note the particular advan-
tages and production technologies of this type of biofuel that can be
derived from the microalgae cell residues after the lipids or valuable
pigments are extracted (Demirbas, 2011; Rashid et al., 2011).

5. Alternative technologies aimed at reducing the cost
of harvesting

The harvesting cost is constantly mentioned as one of the major
limitations to the economic viability of wastewater treatment with
microalgae and/or in the production of biodiesel from microalgae
(Christenson and Sims, 2011; Loera-Quezada andOlguín, 2010;Oswald,
1988; Uduman et al., 2010). There are at least three basic problems:
a) the cell size is very small, ranging between 3 and 30 μm; b) the rela-
tively low cell density, especially in the raceways (b0.5 kg m−3 of dry
biomass) and the large volumes of water being harvested; and c) the
contribution of the harvesting cost to the total cost is in the range
of 20–40%. In the case of some high added value products, such as me-
tabolites or nutraceuticals such as Eicosapentanoic acid (EPA), the re-
covery cost could even represent 60% of the total cost (Molina-Grima
et al., 2003). The use and limitations of several conventional biomass
harvesting technologies, such as centrifugation, chemical flocculation,
filtration and screening, gravity sedimentation, flotation, and electro-
phoresis techniques, have been extensively reviewed (Chen et al.,
2011; Uduman et al., 2010) and are not the subject of discussion in
this section. However, not enough research has been performed in the
field of alternative technologies, such as those that could allow
harvesting of the algae biomass without centrifugation or that could
be applied prior to centrifugation to dewater the biomass, thereby
decreasing the energy input and offering large niche technology devel-
opment opportunities. This section reviews the various alternative
technologies or approaches that are promising for the recovery of bio-
mass because they are aimed at improving the energy balance and the
economic viability of microalgae mass production within a Biorefinery.
Cell immobilization has been previously highlighted as one of the best
alternatives for cost-effective wastewater treatment with microalgae
(Olguín, 2003). Biofilm formation, flocculation and bioflocculation are
also very promising alternatives that deserve further attention in re-
search and development.

5.1. Cell immobilization

Immobilized algal systems should contain certain properties, such
as retaining cell viability and the capacity for adequate photosynthet-
ic rates, to maintain high cell densities and a continuous productivity
(Mallick, 2002). Additionally, the matrix should be selected on the
basis of physical and chemical resistance properties while retaining
the biomass for long-term use. Additionally, they should be non-
toxic and should be produced without the need for complex immobi-
lization techniques (Mallick, 2002; Olguín, 2003). On the other hand,
for wastewater treatment, the selection of the microalgae should take
into account their capacity for high nutrient removal, high growth
rates over or in the matrix with low cell leakage and the facility for
being handled (Pérez-Martinez et al., 2010).

Among the several immobilization techniques that have been de-
scribed and tested, gel entrapment in natural polysaccharide matri-
ces, such as carrageenan, agar and alginate, has been the preference
of several researchers. These types of matrices are advantageous
because they are a renewable resource extracted from various types
of algae. Carrageenan and agar are extracted from red algae, while al-
ginates come from brown algae. Alginate gels may be destabilized by
the presence of phosphate ions because the Ca2+ ions, which are used
to form the gel, may be sequestered as a phosphate salt (Moreno-
Garrido, 2008). Thus, alginate gels are not chosen for wastewater
treatment very often because they lack long-term stability in the
presence of phosphate ions. However, several synthetic matrices (ac-
rylamide, polyurethane, polyvinyl, resins) have also been tested and
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are more stable and less vulnerable to microbial degradation com-
pared to the naturally produced matrices (de-Bashan and Bashan,
2010).

Chitosan and polyvinyl foams are low-cost polymers with a long-
term performance that consider various selective criteria (Olguín,
2003). Chitosan-immobilized cells of the marine cyanobacterium
Synechococcus elongates have been found to be very efficient at re-
moving nitrogen and phosphorus from synthetic wastewater simulat-
ing aquaculture wastewater (Aguilar-May and Sánchez-Saavedra,
2009). These authors reported that ammonia removal was higher in
free cells (54%) compared to immobilized cells (29%), although
nitrate removal was similar in both groups (38% immobilized vs.
44% free). The phosphorus-removing capacity of the free cells was
higher (88%) than the immobilized cells (77%). de-Bashan and
Bashan (2010) reviewed the literature over the last two decades
and concluded that the removal of nitrogen is favorable in immo-
bilized systems in most cases, although phosphorus removal still rep-
resents a challenge that needs to be optimized to enhance its removal.

Another important factor for immobilized systems for treating
wastewater is selecting those species with a higher potential for nutri-
ent removal, although this issue has been poorly addressed (Pérez-
Martinez et al., 2010). Eight benthonic microalgae species isolated
from different sources of pig manure were immobilized in calcium
alginate beads and were tested based on the hypothesis that autoch-
thonous species remove nutrients more efficiently compared to
other species. The results show that phosphate removal rates for the
unicellular self-aggregating benthic species (Palmellopsis gelatinosa,
Chlorosarcinopsis sp., and Macrochloris sp.) were much higher than
those for other species. Similarly, nitrogen removal rates were highest
for Macrochloris sp., Chlorosarcinopsis sp., and Euglena sp. and were
comparable to the maximum rates obtained by other authors (Pérez-
Martinez et al., 2010).

Thus, more research is required to solve the following key issues
before this technology can be applied at a large scale: 1) matrix selec-
tion that takes into consideration strong physical and chemical hardi-
ness, with the proper retention of biomass for long-term use in
wastewater treatment systems. Additionally, they should be non-
toxic and should be produced without the need for complex and cost-
ly immobilization techniques; 2) selection of microalgae considering
their capacity for high nutrient removal and high growth rates in
mixed cultures where other contaminating microorganisms will com-
pete for nutrients; 3) development of easy-to-use harvesting devices
to collect the immobilized beads at a large scale and a further treat-
ment to extract the cells from the beads.

5.2. Biofilm formation

Another alternative technology for reducing the harvesting costs in
massive microalgae cultivation is to induce biofilm formation on the
surface of various substrates, which may be removed easily from the
cultivation medium. In this approach, the information derived from
other types of fields, such as biofilm formation that results in fouling
and corrosion, may be very useful when applied to cultivating micro-
algae in wastewater for biofuel production or other purposes. Study-
ing the adhesion of C. vulgaris (chlorophyceae), Nitzschia amphibia
(bacillariophiceae) and Chroococcus minutes (cyanobacteria) to hy-
drophobic (perspex, titanium and stainless steel 316-L), hydrophilic
(glass) and toxic (copper, aluminum brass and admiralty brass) sub-
strata provided important data (Sekar et al., 2004). The attachment
varied significantly with respect to the surface properties (wettability
and roughness) and composition of thematerial. Adhesionwas higher
on rough surfaces compared to smooth surfaces, and all three organ-
isms attached more on titanium and stainless steel and lower on cop-
per and its alloys. The attachment was also influenced by pH, organic
film, culture age, culture density, cell viability and the presence of
bacterial films.
Another approach for designing substrate materials is to use a rel-
atively low-cost surface material similar to the brushes for cleaning
glassware or for washing cars. A continuous system operated at a
Hydraulic Retention Time (HRT) of 4 days showed removal efficien-
cies of TP, TN, NH3-N, and COD that reached 95.38%, 83.93%, 82.38%,
and 92.31%, respectively, and were very stable for 24 days (Wei
et al., 2008).

A recent report showed successful biofilm formation of Chlorella sp.
on polystyrene foam using dairy manure wastewater as the growth
medium. This study resulted in a high biomass yield (25.65 g/m2,
dry basis) and a high fatty acid yield (2.31 g/m2) (Johnson and Wen,
2010). Furthermore, the total nitrogen removal was in the range of
61–79% and the total phosphorus removal ranged from 62 to 93%.
The biomass was harvested from the attached culture system by
scraping and was a paste-like pulpy slurry.

Biofilm formation has large potential as an alternative harvesting
technology, although there is little information about its application
in dual purpose systems for treating wastewater and recovering
microalgae for biodiesel production. There is definitely a need to
improve biofilm designs to optimize the algae biomass production
(Christenson and Sims, 2011) and the harvesting of it.

5.3. Flocculation

Microalgae and cyanobacteria are covered by extracellular poly-
saccharides (EPS), which give them a negatively charged surface.
The EPS of cyanobacteria are complex anionic polymers, mainly com-
posed of uronic or pyruvic acids, peptides, acetyl radicals or sulfated
molecules (De Philippis et al., 2001). The negatively charged surface
allows flocculation or aggregation of the cells using cationic metals
or other flocculating agents. Thus, flocculation was proposed decades
ago as a means of recovering microalgae at a low cost prior to centri-
fugation and has therefore been specifically proposed for harvesting
microalgae in wastewater treatment (Lee et al., 2009; Oswald,
1988). Four different types of flocculating agents have been tested:
1) cationic metals, such as Al3+ or Fe3+; 2) organic polymers, such
as chitosan and other commercially produced polymers; 3) cationic
starch and 4) hydroxide salts, such as NaOH and KOH. A brief account
of the most recently reported experiences with each type alone or in
combination is presented below.

One study compared the efficiency of two ferric salts against five
commercial polymeric flocculants (Drewfloc 447, Flocudex CS/5000,
Flocusol CM/78, Chemifloc CV/300 and Chitosan) for their ability to
flocculate three different green microalgae (C. sorokiniana, S. obliquus,
Chlorococcum sp.) and a wild type Chlorella in symbiosis with a bacte-
rial consortium cultivated in the supernatant of pig wastewater (de
Godos et al., 2011). The polymeric flocculants had similar removal
efficiencies using a much lower dosage (25–50 mg L−1) than that re-
quired for the ferric salts (150–250 mg L−1). This comparative study
is useful because prior studies showed that microalgae biomass for
biofuel purposes should be free of metallic ions (Lee et al., 2009)
and thus provides evidence that polymeric flocculants might be an al-
ternative, although the authors discuss their limitations in the pres-
ence of organic colloidal matter. Chitosan was used in a different
study to flocculate phytoplankton from shrimp cultivation tanks.
The optimal concentration of this polymer was 0.75 and 0.5 g L−1

for sulfate and chloride salts (Lertsutthiwong et al., 2009), indicating
that lower concentrations can be used under certain water quality
conditions. In another comparative study, twelve metallic flocculants
salts were tested for their ability to flocculate Chlorella minutissima
(Papazi et al., 2010). Aluminum salts were the most efficient, al-
though they caused some cell lysis, which prevents their use in any
Biorefinery design. Ferric and zinc salts had the second and third
best flocculation efficiencies, respectively.

Alternatively to the use of cationic polymers (either metallic or
natural), the neutralization of the negatively charged surface of cells
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with NaOH or KOH has been tested for flocculation purposes. Several
microalgae that are useful as live feed in aquaculture have been
flocculated with an efficiency equal to or above 80% using NaOH to
adjust the pH to 10–10.6 with the addition of Magnafloc LT-25, a
non-ionic polymer, to yield a final concentration of 0.5 mg L−1

(Knuckey et al., 2006). Moreover, a harvesting efficiency greater
than 90% has been achieved with Chaetoceros calcitrans using NaOH
or KOH to adjust the pH to 10.2 (Harith et al., 2009). To neutralize
the negative surface charge, cationic starch has been successfully
used for the flocculation of freshwater microalgae (Parachlorella sp.
and Scenedesmus sp.) but not for marine microalgae (Phaeodactylum
sp. and Nannochloropsis sp.). Of the two commercial cationic starch
flocculants tested, Greenfloc 120, which is used in wastewater treat-
ment, was more efficient than Cargill C*Bond HR (Vandamme et al.,
2010).

A different approach was investigated by Lee et al. (2009), who
demonstrated a recovery percentage of 90% and a concentration fac-
tor of 226. In this study, a marine microalgae, Pleurochrysis carterae,
was cultivated in the presence of organic substrates, such as acetate,
glycerol and glucose, to induce formation of exo-polysaccharides
and flocculation. Mixing was found to be one of the major factors in-
volved in this flocculation process. The authors performed a modeling
study to estimate the order of magnitude of the mixing energy re-
quired for a hypothetical 1 km2 High Rate Oxidation Pond (HROP).
They found that the mixing energy required to harvest the microalgae
produced in the system was equivalent to 0.1 m of hydraulic head or
0.9 kWh*t

−1 of flocculated dry mass. The overall cost of microalgae
harvesting was estimated to be A$0.13 (Australian dollars) per m3

of culture medium (Lee et al., 2010).
One limitation of the reported alternative harvesting technologies is

that very few economic assessments have been performed. Danquah
et al. (2009) presented a comparative economic study on the use of
chemical flocculation and tangential flow filtration (TFF) for dewatering
a Tetraselmis suecica culture. The authors showed that by using TFF,
the microalgae were concentrated up to 148 times, and the process
consumed 2.06 kWh*m

−3 of energy. In contrast, when flocculation
was used, the microalgae were concentrated up to 357 times, and the
process consumed 14.81 kWh*m

−3. An economic evaluation showed
that TFF required a higher initial capital investment over polymer floc-
culation. However, the payback period for TFF at the upper extreme of
microalgae revenue was approximately 1.5 years while that for floccu-
lation was approximately 3 years. This example demonstrates the
usefulness of economic assessments and indicates that TFF is more con-
venient than flocculation in this particular case. More studies of this
type are needed to draw a clear conclusion about the limitations or ad-
vantages of flocculation on a larger scale.

5.4. Bio-flocculation

Bio-flocculation using microalgae species with self-aggregation
properties was described a few decades ago as a potential harvesting
procedure (Olguín, 2003). In a previous study (Borowitzka, 1988), a
cyanobacterium of the genus Phormidium was isolated because of its
capacity to release a bio-flocculant. This cyanobacterium secreted a
large molecular weight polymer that contained polysaccharide, fatty
acid and protein moieties. In another work, a filamentous bio-
flocculating microalga of the genus Chlorhormidium was used to suc-
cessfully treat secondary municipal effluents (Sérodes et al., 1991).
There is still limited knowledge of the factors that influence bio-
flocculation, and more research is needed to apply this approach on
a larger scale. The literature in this field is limited, indicating that
this area offers a very promising niche for research and development.
A recent report on this subject used a combination of chemical floccu-
lants together with a bio-flocculant polymer that was naturally pro-
duced by a bacterium (Paenibacillus polymyxa). Kim et al. (2011)
reported the sequential addition of 8.5 mM CaCl2, 0.2 mM FeCl3 and
1% of a bio-flocculant extracted from the culture broth of P. polymyxa
AM49. They observed a high flocculating activity (up to 95%) of dense
cultures of Scenedesmus sp. The possibility of reusing the culture me-
dium after harvesting the biomass to further cultivate microalgae was
also investigated.

Another promising approach involvedmixing flocculating (A. falcatus,
S. obliquus and T. suecica) and non-flocculating (C. vulgaris and N.
oleoabundans) microalgae in order to enhance the recovery efficien-
cy of the mixture (Salim et al., 2010). The lipid content of the species
used was, on average, more than 25% of their dry weight. This factor
helped maintain a recovered product with the expected oil content
for biodiesel production; no addition of chemical flocculants was re-
quired. Taking into account the cost of production of the flocculating
microalgae in a separate cultivation system, the authors recognized
that more work is required in order to determine the economic
viability of bio-flocculating microalgae on a larger scale.

6. Concluding remarks and future perspective

Currently, there are a number of technological, market and policy
barriers that affect the economic feasibility of producing biodiesel
frommicroalgae. Nevertheless, a number of potential business oppor-
tunities exist if the production of these alternative biofuels becomes a
part of an integrated Biorefinery system. In this scenario, high-value
biofuels and chemical products are produced and contribute to the
economic viability of other products. To this end, dual purpose micro-
algae–bacteria based systems that treat wastewater and produce
biofuels and chemical products offer substantial savings over micro-
algae biomass production. These systems have the advantage of not
competing for the fresh water resources needed for agriculture and
add to the value of treated wastewater.

A number of recommendations can bemade to overcome the tech-
nological constraints of a Biorefinery system that uses microalgae to
simultaneously treat wastewater and produce biofuels and high
added value products: a) scale up the laboratory results and establish
pilot plants (data from these large scale facilities should be the subject
of economic feasibility analysis and Life Cycle Analysis); b) avoid ex-
trapolations of biomass, lipid, high added value products and biofuel
productivity using data generated at the laboratory level; c) intensify
research on integrating systems that treat wastewater with micro-
algae, especially in the areas of nutrient availability, toxic compound
effects and population dynamics in mixed cultures and consortia;
d) use polluted rivers as source of nutrients for microalgae cultivation,
simultaneously treating the water through phycoremediation and
phytoremediation; e) demonstrate the efficiency and cost effectiveness
of various alternative biomass harvesting technologies on a large scale;
f) provide clear answers to measure the Energy Balance and economic
viability of biodiesel production frommicroalgaewhen using wastewa-
ter; and g) assess the economic benefit of an integrated system for cul-
tivation of oleaginous microalgae and Arthrospira (using different
ponds) as sources of high value added products and perform an Energy
Balance analysis and Life Cycle Analysis of each biofuel production.
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